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Multigrid methods for combined finite difference and Fourier pseudospectral problems are 
considered. Applications to two- and three-dimensional elliptic systems are given. Suitable 
relaxation schemes for isotropic and anisotropic problems are presented. Numerical results 
demonstrate the efhciency of these methods. 0 1988 Academic PIW, IDC. 

1. INTRODUCTION 

We study elliptic problems with combined Dirichlet (or Neumann) and periodic 
boundary conditions. The Dirichlet direction is discretized by means of finite 
differences and periodicity is enforced by a Fourier pseudospectral method. A 
convergence analysis of these method was already given by Canuto, Maday, and 
Quarteroni [ 51. 

Spectral methods [13, 15, 161 usually employ Chebyshev polynomials in the 
nonperiodic direction. This leads to highly accurate approximations with relatively 
few degrees of freedom. A disadvantage of this approach is the high condition 
number which increases as IV4 (N: number of grid points) (see Zang, Wong, and 
Hussaini [18]). Furthermore, the use of Gauss (-Lobatto) nodes is necessary in 
order to avoid a significant deterioration of the discretization error (see [4, 6, 71). 
Equidistant nodes, for instance, would lead to an exponential perturbation of 
convergence (see, e.g., De Boor [9]). For employing fast Fourier transforms 
(FFTs) the Chebyshev nodes are commonly used. 

For the finite difference discretization we attain a condition number of N2 and, 
in addition, equidistant nodes are taken which give uniformly distributed 
approximation values over the whole region. 

Multigrid methods for the solution of spectral systems were introduced by Zang 
et al. [18, 191. Brandt, Fulton, and Taylor [3] have improved them for periodic 
problems. Erlebacher, Zang, and Hussaini [lo] investigated the specific problems 
arising from three-dimensional (Fourier-) Helmholtz equations. We achieved some 
improvements for Dirichlet problems [13]. The experiences concerning suitable 
relaxation techniques are now adopted to combined finite difference and Fourier 
spectral problems. 
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In Section 3 we first consider isotropic problems where weighted residual 
relaxation schemes [Z] yield greatly improved smoothing rates. Here the optimal 
weights are calculated for two- and three-dimensional elliptic model problems. 
Although the smoothing analysis is rigorous only for constant coefficients the rates 
obtained even hold for variable coefficients. 

For anisotropic problems or when different step sizes (for each direction) are 
used, pointwise reiaxation is inefficient and linewise relaxation techniques are 
necessary. Here we employ a zebra line relaxation (see [ 3, 13, 17] ) for defect 
correction. In Section 4 we describe the efficient implementation of these methods. 
Furthermore different types of Richardson relaxation are compared. ~~rn~ri~~~ 
results for some examples introduced by Street, Zang, and Hussaini [16] show the 
efficiency of multigrid methods for combined finite difference and Fourier proble 

2. FINITE DIFFERENCE AND FOURIER DISCRETIZATION 

We consider two- and three-dimensional elliptic problems, given as 

(au,),+ @&=f on i-2 = (0,27c)2 (2.1) 

and 

(a%),+ (buy),+ (%)z=f on sz= (0,2?s)3 (2.2) 

with periodic or Dirichlet (or Neumann) boundary conditions in X, y, z. Here a, Et, 
c, f denote given functions, defined on Q. For anisotropic problems we use the 
interval ( - 1, 1) in the direction of Dirichlet boundary conditions instead of (0,2n). 

The Dirichlet directions are discretized by usual second (or fourth) order finite 
differences (FD) and in the direction of periodicity we use a pseudospectral Fourier 
(PSF) method. The essence of the PSF method is to approximate the solution u by 
a truncated Fourier series which satisfies (2.1) or (2.2) at a finite set of discrete 
points known as collocation points. The collocation points for the PSF method are 

j2n 
Yj = 7 (j=O, . ..) N-I) 

and the points for the FD discretization are 

i2n 
Xi=M 

on (0,2n) 
c 

resp.xi=$-lon(-1, 1) (i=l,...,M-1) . 

Here M and N are chosen as certain powers of 2. The live-point second-order F 
operator applied to the one-dimensional operator (au’)’ at x = xi is given as 

581i78/2-12 
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where h,=2n/M on (0,27~) (resp. h,=2/M on (-1, 1)). For fourth-order FD 
applied to u” we use 

~(Uh(Xi-2)+Uii(Xi+2)-16(Uh(Xi-l)+U6(XI+1))+ 30Uh(X,)). (2.4) 
M 

At the points next to the boundary we employ the second-order FD (2.3) (see 
Hackbusch [12]). By monotonicity arguments it can be shown that this com- 
bination of (2.3), (2.4) yields fourth-order convergence. Other higher order FD 
operators as, e.g., the “Mehrstellen”-operator (see, e.g., Collatz [S]) are not 
applicable since not all directions are discretized by FD methods. 

For Neumann boundary conditions at x = x0 we use first- and second-order FDs, 
i.e., u’(x,) is discretized by 

$ (Uh(XI) - Uh(-%)) 
M 

and 

$ (- 1.5uh(x,) + 2uh(x,) - O.Sz?(x,)). 

(2.5) 

(2.6) 

Here (2.5) is only used for preconditioning and (2.6) for evaluating the residual. 
In the direction of periodicity we use the “midpoint discretization,” recommended 

by Brandt et al. [3]. By this approach the information in the highest mode is 
retained and an improved accuracy can be achieved. 

3. ISOTROPIC PROBLEMS 

The problem (2.1) (resp. (2.2)) is called isotropic if a = b (resp. a = b = c) on 0. 
The corresponding discrete problems are called isotropic if, additionally, M= N, 
which will be assumed throughout this section. For such problems the effectiveness 
of the residual can be increased by updating the approximation uh by a suitable 
weighted sum of values of the residual rh at the neighbouring points (see Brandt et 
al. [l, 31). This technique is usually referred to as the weighted residual relaxation 
scheme. 

For problem (2.1) and a,hxed point (xi, yk) the scheme for calculating the new 
approximation dh is given by 

~~,=u~,-ocarir,+Px(‘ih-1,k+rih+1,k)+Py(r~k--++~k+1) 

+ y(r;- 1,k--l+Tjh-1,k+l+rih+l,k-l+Tih+1,k+l)l 

with the relaxation parameter o and weights CI, /I,, BY, y. 
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For problem (2.2) and a fixed point (x,, y,, zl) it is given by 

-h h 
‘j, k, I = ‘j, k, I - o[“Irj”, k, / + bx#- 1, k, I + ‘$+ 1, k, 1) 

+ b.# k - 1, I + ri k + 1, I) + fi&j k; [- 1 + $ k, (+ 1) 

+Y.~~(r,h-1,k-!,I+y/h-1,k+l,I+r/h+1,k-l.I$~~+1,k+l.I) 

+y.~=(r,h-1,k,I-I+Y~-1,k,I+l+I;h+1,k,I-1+Tih+,,k.I+I) 

+Y.“,(YJh,k-1,I-1+Tjh,k-1,I+1+Yjh,k+1,,-1+r~k+1,i+I) 

+ 6(r,hp 1,k--l,I-1’rih-1,k+1,I-1’Yih,1,k-I,I-1’Tjh+1,k+l.I-i 

h 
+Yj-1,k~I,1+1+r~--,k+1,1+1+‘~+l,k--1.i+i+Yjh+1,k+l,I+i)I. 

3.1. Smoothing Analysis 

For calculating the optimal weights we use local mode analysis [2]. The 
coefficients a, 6, c are considered to be constant. The discrete e&e&unctions for the 
FD (resp. PSF) method are now given by 

(Xj=jhiy;j’ 1, . . . . N- 1) 

for n = 1, . . . . N- 1 (resp. 

$2 m = exp(imyk) (yk = k2rc/N; k = 0, ~.., N - 1) 

for m = -N/2, . . . . N/2). 
With 9, = n, E/N (n, = 0, . . . . N) (respp. 9, =n,2z/N (n,= -N/2, ,.., N/2)) we 

introduce the corresponding discrete wavenumbers. We choose the relaxation 
parameter w as 

h2 47x2 472 
co=y-&=je-$=-$. (3.1) 

Depending on the combination of second-order FD and PSF, different convergence 
factors are available. (If the error before relaxation has a component AsEs, the 
error after relaxation will have the component &E,. The quotient &/A, is called 
the convergence factor p(9).) We get for problem (2.1) and the combination 

PSF/PSF: ,u($) = 1 - (9; f 9;) xxY 
FD/PSF: ~(9) = 1 - (2( 1 - cos(9,)) + 9;) X,, 
FD/FD: p(Q) = 1 - 2(2 - cos(9,) - cos(9,)) Xxy, 

where X,, = a + 28, cos($,) + 2g, cos(8,) + 4y cos(LJx) cos(Sy). We furt 
problem (2.2) and the combination 
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PSF/PSF/PSF: p(9) = 1 - (8: + 9; -t- 9,‘) Xx,= 
FD/PSF/PSF: p(S) = 1 - (2( 1 - cos(9,) + 8; i- $2) x,,, 
FD/FD/PSF: p(S) = 1 - (2(2 - cos(9.J - cos(9,)) + 8;) xxyz 
FD/FD/FD: p(8) = 1 - 2(3 - cos(9.J - cos(9,) - cos(9,)) x,,,, 

where 

The wavenumbers 9,, Qy, 9, are discrete values but for a smoothing analysis we 
consider them continuously distributed; i.e., the modes representable on the line 
grid have 191 =max(lhl, l~,l, l&l> < 71. The modes not representable on the 
coarse grids (with step size 27c/pN (p < 1)) are the high wavenumbers with ] 9 ) > pn. 
Including ) 9 / = prr as the high wavenumber, the smoothing factor is defined as 

It is obvious that ji and the optimal parameters do not depend on N. In the case of 
the single parameter a (i.e., the other parameters are equal to zero) the weighted 
residual scheme reduces to the usual Richardson relaxation scheme [18]. Only in 
this case can the optimal a and corresponding ji be calculated analytically and we 
get for problem (2.1): 

PSF/PSF (see [3]): 
2 292 

a=(2+p2)7T2' fi=2+p2 

2 _ 2+7c2+2cosp7I 
LX= 

6f?c~-2cospn' P=6+rr2-2cospn 
FD/PSF: 

FD/FD (see [ 1 I): 

For problem (2.2) we get 

PSF/PSF/PSF (see [lo]): 

FD/PSF/PSF: 

FD/FD/PSF: 

FD/FD/FD (see [ 1 ] ): 

1 
a= 

5-cospz' 

2 
a=(3+p2)7L2y 

p= 3+cosp7T 
5-cospk 

_ 3-p2 
;u=3+p2 

1 1+rc*+cosp71 
a=3+7c2-COSp7r~ 

p= 
3+x2-cosp71 

2 6+7?+2cosp71 

a=10+n2-2cosp7cn' 
p= 

lOfn2-2cosp71 

1 _ 5+cospn 
a=7-cospz~ P=7-cospn' 
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The standard mesh ratio is p = i, where we obtain 

PSF/PSF: 

FD/PSF: 

FD/FD: 

PSF/PSF/PSF: 

FD/PSF/PSF: 

FD/FD/PSF: 

FD/FD/FD: 

8 
a=%, 

2 _ 2+n’ 
g=------- 

6+n2’ 
‘=6+7c’ ___ 5 0.7479 

1 @I=---, 
5 

)+().6 

8 11 
u=m’ ii=,, - s= 0.8462 

1 _ 1+x2 
a=3+712’ p=3+7T2 - G= 0.8446 

2 _ 6+z2 
a=sf p= - 10+712 G 0.7987 

1 
I%=--, 

7 
0.7143. 

If more than one parameter is considered the optimal weights and p must be 
computed numerically. For this purpose we employ the differential-correction 
algorithm [14]. Tables I and II contain the results for problems (2.1) and (2.2). It 
becomes obvious that the weighted residual relaxation scheme improves the 
smoothing factor dramatically and the computational effort needed is relatively 
small. Further numerical tests show that the introduction of more s~rro~~di~g 
points leads to only small reductions in the smoothing factor. 

TABLE I 

Optimal Parameters and Smoothing Factors for Problem (2.1) 

Method 

PSFjPSF 

FDjPSF 

FD/FD 

o! Bx PY Y P 

0.9006(-l) 0 0 0 0.1718 
0.1491 0.3024(-l) 0.3024(- 1) 0 0.4718 
0.2240 0.7000-l) 0.7Om-1) 0.2800-i) 0.1058 

0.1260 0 0 cl 0.1419 
0.2311 0.2097 (-1) 0.6935 (-1) 0 0.3262 
0.2554 0.5483 (-1) 0.8694(-l) 0.2423 (-1) 0.1414 

0.2 0 0 0 0.6 
0.2921 0.4878 (-1) 0.4878 (-1) 0 0.2195 
0.2889 0.6567(-l) 0.6567(- 1) 0.1970(--l) 0.1595 
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TABLE II 

Optimal Parameters and Convergence Factors for Problem (2.2) 

Method Parameters Optimal values Smoothing rate p 

PSF/PSF/PSF G( 0.6235 (- 1) 0.8462 

~x.D,d% 0.1777 0.1187 (-1) 0.6417 

k. By, Pz 
0.1245 
0.3034 ( - 1) 

Yxy 7x,, Yp 0.8950 (- 1) 0.4732 

ii> P,> A 
0.1472 
0.4438 (- 1) 

Yry, Yxz, Yvz 0.1926(-l) 
6 0.8998 (-2) 0.1898 

FD/PSF/PSF G( 0.7770 (- 1) 0.8446 

ix 0.1349 0.1278 (-1) 
By7 Pz 0.2319 (-1) 0.6063 

Ii 0.1665 0.2220 (- 1) 
PP PZ 0.4851 (-1) 
Yxp Yx, 0.6910 (-2) 
YYZ 0.1843 (-1) 0.3534 

;x 0.3454 0.1623 ( - 1) 
PP a2 0.5031(-l) 
Yxv Yxz 0.1561 (-1) 

YYZ 0.2187(-l) 
6 0.7325 (-2) 0.2046 

FD/FD/PSF a 0.1007 0.7937 

;.c L P, 0.1768 0.4263 ( - 1) 
0.1667(-l) 

0.5621 
a 0.1964 

k py 
0.3537 (- 1) 

i 0.5944 (- 1) 
Y-XV 0.6258 (-2) 
Yxzg Yyz 0.1399 (-1) 0.3037 

jXT BY 0.1795 0.3863 (- 1) 
L 0.5684 (- 1) 

YXY 0.1251(-l) 
Yxz. Yyz 0.1729 (-1) 
6 0.5951(-2) 0.2157 

FD/FD/FD a 0.1429 0.7143 

ix3 By, 8, 0.3206 0.2384 (- 1) 0.4472 
a 0.2154 
Bx? I% 8, 0.4387 (- 1) 
Ysy7 Y.xzv Yyz 0.1035 (-1) 0.3099 

ix. Pyt P, 
0.1965 
0.3975 ( - 1) 

Y.W. Y.rz, Yp 0.1157 (-1) 
6 0.3694 ( - 2) 0.1967 
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Finally, we remark that in the case of different step sizes (M% N) or di~~~e~t 
lengths of intervals (e.g., (- 1, 1) x (0, 2~)) the smoothing factors deteriorate 
significantly. If we consider A4 = N but ( - 1, 1) x (0,271) for the FD/PSF) met 
we obtain only a rate p =L 0.6735 (for four weights). Hence relaxation schemes used 
for anisotropic problems (see Sect. 4) are appropriate smoothers. 

3.2. Implementation and Numerical Results 

We use a V-cycle with four grids (4, 8, 16, and 32 points in each direction). Fixed 
numbers Nd = 1 and N, = 0 of relaxation steps on each grid in the downward 
upward branches are employed. For grid transfers in the Fourier direction we 
the usual Fourier interpolations [18]. In the direction of FDs we use, for 
restriction, the full weighting operator [J$j]E’* and for interpolation the endear 
interpolation operator 14 1 $[c,,, where ] [& means that only the (su~r~u~di~~) 
points which belong to both the coarse and the fine grid are taken into account (see 
[ 171)~ We use the weighted residual relaxation, where the relaxation parameter . 
evaluated pointwise as suggested by the smoothing analysis (see (3.1)). T 
convergence factor p of the whole multigrid procedure is calculated by means of the 
power method [ 113. The convergence factor per work unit is defined as pw = piiw9 
where W denotes the work for relaxation on the different grids. The standard work 
unit is the work involved in one relaxation sweep on the finest grid. Hence we get, 
in the above situation, W= 1.328125 (N,, + N,) = 1.328125. 

We consider problem (2.1) with variable coefficients 

4x, y) = 0, y) = 1+ E exp(cos(p(x +y)))> 

/5= lo&, EE (0. ) 0.1, 0.2). 
We examine the FD/PSF method with 1, 2, and 4 weights, where the optimal 

values are taken from Table I. Numerical results are presented in Table III. It can 
be seen that for E = 0.2 the results degrade somewhat. This becomes still more 
significant for larger E. 

TABLE III 

Convergence Factors p/pw for the FD/PSF Method 

Number of 
parameters 

1 

3 

4 

&=O &=o.l E =0.2 

0.7381/ 0.74191 O.l437/ 
0.7956 0.7988 0.8(MI 

0.3065/ 0.3098/ 0.4711/ 
0.4105 0.4138 0.5679 

0.1981/ 0.2005/ 0.3878/ 
0.2955 0.2983 0.4901 
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But this effect could be expected since the local mode analysis is only rigorous in 
the case of constant coefficients. It becomes obvious that the convergence factor p 
(and not p, as for spectral multigrid methods) is close to the smoothing factor ji. In 
the case of 4 weights it even turns out to be something worse than ,E. This 
behaviour is typical for FD multigrid methods (see [17]) and is due to the fact that 
the smoothing effect is not fully exploited as the reduction of low error frequencies 
by one coarse grid correction step is not good enough. Furthermore, the smoothing 
effect is even partly destroyed by the coarse grid correction which introduces new 
high frequencies by itself. This is also the reason why further smoothing steps are 
not profitable when the smoothing rate is small. 

4. ANISOTROPIC PROBLEMS 

We consider anisotropic problems given as 

(WJX + (buy), =f on (-l,l)x(O,27t). (4.1) 

The discretuzation is done by means of the FD/PSF method. The coefficients a and 
b are not necessarily equal and the step size in x is assumed to be much smaller 
than the step size in y, i.e., M$ N. 

For such problems we prefer a relaxation scheme based on defect correction with 
the live-point second-order operator 

~(a(~j-,:,,Yk)u:~l,k-(a(x,-l,2~Yk)+~(x,+l,27Yk))~~k 

+ 4xj+ l/2 9 Yk.) $+ 1, k) 

-(b(xj,yk--,2)+b(Xj,yk+1,2))U~k+b(Xj,~k+1,2)Uirk+1). (4.2) 

4.1. Smoothing Analysis and Implementation 
An appropriate smoother for anisotropic problems is the line relaxation (see 

[3, 131). We employ line relaxation for defect correction and, by making one 
sweep, we obtain an approximation from an initial approximation of zero. 

We relax along lines of constant y by solving 

M2 
4 dxj- l/27 Yk) $- 1, k - $ (dxj- l/2> Yk) -t a(xj+l,2, Yk)) 

+~(b(xj,~k-,,2)+b(Xj,Y k+l,2,,> $k+T 4Xj+ l/27 yk) q+ 1, k 

=$k 4,.$ -‘TZ(b(Xj~Yk-1/2)~~k-1+b(~j~Yk+l,Z)u~k+l) 

for fib. Here rh denotes the residual. 
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By solving first for the odd (“white”) lines and then for the even (“black”) lines 
we attain zebra line relaxation. If we relax along lines of constant y and then by 
doing an analogous sweep along lines of constant x we attain the alternating zebra 
line relaxation. The linear systems involved are symmetric and tridiagonal and were 
solved using a Cholesky decomposition. By computing the factorizations once an 
storing them, the computational costs per sweep could be cut in half. 

We consider examples where a >, b on (- 1, 1) x (0, 2n) and since, further, 
M2/4 & N2/4n2, the x-direction is dominant and an exclusive smootbing in this 
direction is enough. A further step in the y-direction yields only a small 
improvement. 

A smoothing analysis as done in [3, 131 shows that after the correction t 
frequencies with eigenvalues in [ 1, 7r2/4] have to be smoothed. The following choice 
of relaxation parameters is based on this prediction. Here the interval 
results from an asymptotic consideration, i.e., for large M, N. For small 
greatest eigenvalues are-dependent on M, N-somewhat smaller and somewb~t 
better smoothing rates can be expected (see also Tables VII, VIII). furthermore we 
compare three types of relaxation, stationary Richardson (SR ), nonstationary 
Richardson (NSR) and minimal residual Richardson (MRR) relaxation. These 
types are already extensively investigated in the spectral literature (see also Cl3] ). 
We use N, = 2, N, = 0 for SR, MRR and N, = 3, N, = 0 for NSR relaxation. The 
transfer operators are chosen as for isotropic problems. The multigri 
consists of a r/-cycle with four grids (16, 32, 64, 128 points in the x-direction and 4, 
8, 16, 32 points in the y-direction). 

4.2. Numerical Results 

We tested the multigrid procedure for examples with coefficient functions 

a(x, y) = b(x, y) = 1+ E exp(cos(B(nx i y))) (4.3) 
and 

where T(X) = 3 + 2x and 

4~ .Y) = 1+ 8 exp(cos(b(r(x) + y))) 

for @ = 108, EE (0. , 0.1, 0.2). 
These coefficients were introduced by Streett et al. [16] and were also examine 

in [13]. For (4.4) we consider Dirichlet and Neumann boundary conditions (at 
x = - 1). The Neumann boundary conditions are treated explicitly and are 
discretized by the second-order FD (2.6). The corresponding preconditioning is 
done by first- or second-order FDs. In Tables IV-VI we present the convergence 
factors pw for the above tests examples. 



434 WILHELM HEINRICHS 

Relaxation 

TABLE IV 

Convergence Factors pw for Coefficients (4.3) 

&=O E=o.l E = 0.2 

SR 0.5204 0.5245 0.5250 
NSR 0.4131 0.4134 0.4139 

MRR 0.4122 0.4724 0.4793 

The numerical results show that the factors hardly deteriorate for increasing s. 
This is due to the fact that the difference operator itself is preconditioned. As 
expected, the NSR and MRR relaxation yields better results than the SR relaxation. 
For the Dirichlet problems NSR is somewhat better than MRR. This confirms that 
the smoothing analysis has given a good prediction for the choice of relaxation 
parameters. 

For the first-order preconditioning of Neumann boundary conditions the con- 
vergence factors turn out to be somewhat worse (see Table VI). On the other hand, 
for the second-order preconditioning the systems deviate (in one component) from 
tridiagonal systems. Nevertheless, we recommend this form since the corresponding 
elimination is not very costly. For the Chebyshev-Fourier discretization [13] of 
elliptic problems with Neumann boundary conditions the MRR relaxation was 
badly convergent with convergence factors equal to one. This problem does not 
arise for the FD/PSF method since the symmetric part of the discretization matrix 
is (negative) definite. 

For some examples introduced by Streett et al. [16] we investigate the accuracy 
of the FD/PSF method. We consider three examples with solutions 

(1) U(X, y) = sin(nx + 7c/4) sin (rc cos y + rc/4) and coefficients a = b = 1, 
(2) U(X, y) = sin(rcr(x)) sin(n cos y + n/4) and coefficients as in (4.4) for a = 1, 
(3) u(x, v) = cos(m(x)) sin(x cos y + 7r/4) and coefficients as for example (2), but 

with Neumann boundary conditions at r = 1. 

Here by E2 (resp. EM) we denote the absolute discretization error 11 U- uhI/ 
measured by the discrete Z2 (resp. maximum) norm. We count the number IT of 

TABLE V 

Convergence Factors pw for Coefficients (4.4) 

Relaxation &=O e=O.l E = 0.2 

SR 0.5254 0.5268 0.5270 
NSR 0.4154 0.4155 0.4160 

MRR 0.4670 0.4576 0.4714 
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TABLE VI 

Convergence Factors p W for Coefficients (4.4) and Neumann Boundary Conditions at P = 1 
with First- and Second-Order Preconditioning 

Relaxation &=O &=o.l E = 0.2 

First-order preconditioning 

SR 0.6526 0.6529 0.6522 
NSR 0.6143 0.6129 0.6139 
MRR 0.5880 0.5863 0.6047 

Second-order preconditioning 

SR 0.5324 0.5332 0.5350 
NSR 0.4667 0.4857 0.4921 
MRR 0.4159 0.4770 0.4880 

Y-cycles needed in order to achieve an accuracy of j/ u:,- z? /j < E2 for the ITth 
approximation u:,. In all cases we started with the zero grid function. Now the con- 
vergence factor can be measured by the mean value [3], /i: = (I/ z&. - uh jl/\/ uh jj )“? 

The corresponding convergence factor per work unit is written as pW. 
numerical results are presented in Table VII. It can be seen that the accuracy is 
determined by the second-order FD method. In Table VIII we give the results for 
example (1) discretized by the fourth-order FD operator (2.4). The accuracy of 
about 10W7 on the finest grid is still determined by the FD method since the 
spectral accuracy lies about lo-l2 (see [ 131). But for almost all realistic 
applications, the fourth-order accuracy is acceptable. 

The preceding numerical results demonstrate that combined FD an 
probIems can efficiently be solved by multigrid methods. 

TABLE VII 

Numerical Results for the Examples in Section 4.2 with Second-Order FDs 

Example 

1 

2 

3 

M’ N EM E2 IT Dw 

32 8 8.95 (-2) 3.99 (-2) 1 0.3179 
64 16 1.06(-3) 3.33 (-4) 2 0.3661 

128 32 2.35 (-4) 8.25 (-5) 3 0.3721 

32 8 6.82 (-2) 1.63 (-2) 1 0.2964 
64 16 3.25 (-3) 1.51 (-3) 2 0.3371 

128 32 8.10 (-4) 3.17 (-4) 2 0.3517 

32 8 7.51 (-2) 1.99 (-2) 2 0.4245 
64 16 5.51 (-3) 2.29 (-3) 3 0.4688 

128 32 1.35 (-3) 4.87 (-4) 3 0.5033 
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TABLE iIII 

Numerical Results for Example (1) in Section 4.2 with Fourth-Order FDs 

Example 

1 

M N EM E2 IT PW 

32 8 8.55 (-2) 3.99 ( -2) 1 0.3288 
64 16 1.20( -4) 4.78 (-5) 3 0.3761 

128 32 3.92 (-7) 1.57 (-7) 4 0.3804 
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